

PES, PADS, and you

Benn Tannenbaum UCLA

1 November 2001

Joint Physics Group meeting

PES Banks

- PESD
 - Raw PES information
 - Location & ADC counts
- PlugStrips
 - "PESE" information
 - Location, counts, corrected energy
- PesCluster
 - 1d cluster of up to 9 PlugStrips
- Pes2dCluster
 - 2d cluster of one u and one v layer 1d cluster
- PESQ
 - Pes PAD
 - Location, corrected energy

- Your big question should be, "Why does the PESQ contain the corrected energy and not the raw ADC counts?"
- Answer: Too much database access. These constants won't change over time for a given run, but may change from run to run. Don't want to have that much DB thrashing for every user's analysis job!

- Your next question should be, "what is the energy threshold to make a PESQ bank"
- Answer: None. All PlugStrips are made into PESQ banks. Why?
 Because this is (in theory) a pedestal-free detector, any energy deposited in the PES is real energy.
 We still have to study this, but single strips are likely MIPs racing through.
- However! There are already hooks in the code to allow a run-time threshold to be set.

PESQ Compression?

- Next question: Is there any compression in the PESQ?
- Answer: Not at present. Now, we simply make a PESQ StorableObject for each and every strip that has energy in it.
- If we instead do a sort of "precluster" where we write out the address, followed by the number of contiguous strips with non-zero energy, followed by the energy on each of those strips, we can get a compression of almost 50%.
 - I estimate about a week's worth of time to get this done. (Hard part is uncompressing, not compressing...)
 Right now, I don't have that week.

PESQ Size?

- Finally, you're probably asking, "So, Benn, how big are these things?"
- Answer: Monte Carlo studies show (with no compression) 1.5 kB/event for top events, 300 B/event with a threshold of 20 counts and 2.4 kB/events for W events.
- However! Random physics run (126859) is 9.3 kB/event, Z sample is 12.8 kB/event and minBias run (125746) is 5.1 kB/event. Why? A glance at any counting distribution shows FIVE times as many strips and clusters in the data as in the Monte Carlo. Further, it's not a lot of low energy stuff. I am investigating...

Compare occupancy for MC and Data

More MC/Data Comparisons

Testing....

- The existing PESQ code has been tested, in that we can write out PESQ StorableObjects and read them back in with no errors.
- Clearly need to extensively test any implemented compression algorithms

- PESQ exist and function
- No threshold (and none wanted!)
- No compression yet
- Size was larger than expected, but is coming down
- Once compression implemented (iff needed), will test....